Estimation of photocatalytic degradation rate using smartphone based analysis

  • N. Danyliuk Vasyl Stefanyk Precarpathian National University
  • T. Tatarchuk Vasyl Stefanyk Precarpathian National University
  • A. Shyichuk Vasyl Stefanyk Precarpathian National University
Keywords: smartphone, Rhodamine B, photocatalyst, LED, photodegradation

Abstract

A simple approach to test photocatalyst activity has been described. Photocatalytic degradation of a model dye was measured using a smartphone. The color changes were registered directly in the micro-photoreactor. The model dye Rhodamine B was degraded under UV irradiation (365 nm). The effect of H2O2 concentration and titanium dioxide photocatalyst dosage has been studied. Among three color systems, RGB, CIE L*a*b* and HSV, the first one proved to be the most suitable for the dye determination. The reference measurements were carried out with a UV-Vis spectrophotometer. Two smartphones and two tablets with different camera resolutions have been examined. The best calibration curve was obtained using a Samsung Galaxy A6 smartphone with a 16MP camera. The t-test has shown with 95 % confidence that there are no significant differences between the dye concentrations measured with the smartphone and spectrophotometer. The values of the relative standard deviation of the smartphone measurements were less than 0.5 %. Therefore, the proposed method for fast estimation of photocatalyst activity can be used in the control of advanced oxidation reactions.

References

S. Srivastava, S. Vaddadi, S. Sadistap, Smartphone-based System for water quality analysis, Appl. Water Sci. 8 (2018). doi:10.1007/s13201-018-0780-0.

H. Liu, F. Zhan, F. Liu, M. Zhu, X. Zhou, D. Xing, Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform, Biosens. Bioelectron. 62 (2014) 38–46. doi:10.1016/j.bios.2014.06.020.

G.H. Chen, W.Y. Chen, Y.C. Yen, C.W. Wang, H.T. Chang, C.F. Chen, Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices, Anal. Chem. 86 (2014) 6843–6849. doi:10.1021/ac5008688.

A.F. João, A.L. Squissato, G.M. Fernandes, R.M. Cardoso, A.D. Batista, R.A.A. Muñoz, Iron (III) determination in bioethanol fuel using a smartphone-based device, Microchem. J. 146 (2019) 1134–1139. doi:10.1016/J.MICROC.2019.02.053.

H. Zhu, U. Sikora, A. Ozcan, Quantum dot enabled detection of Escherichia coli using a cell-phone, Analyst. 137 (2012) 2541–2544. doi:10.1039/c2an35071h.

A. Irhas Robby, S. Gi Kim, U. Han Lee, I. In, G. Lee, S. Young Park, Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO3-immobilized fluorescent carbon dots with photothermal ablation of bacteria, Chem. Eng. J. (2020) 126351. doi:10.1016/j.cej.2020.126351.

L. Hou, Y. Qin, J. Li, S. Qin, Y. Huang, T. Lin, L. Guo, F. Ye, S. Zhao, A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone, Biosens. Bioelectron. 143 (2019) 111605. doi:10.1016/j.bios.2019.111605.

J.T.C. Barragan, L.T. Kubota, Minipotentiostat controlled by smartphone on a micropipette: A versatile, portable, agile and accurate tool for electroanalysis, Electrochim. Acta. 341 (2020) 136048. doi:10.1016/j.electacta.2020.136048.

P.S. Liang, T.S. Park, J.Y. Yoon, Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor, Sci. Rep. 4 (2014) 4–11. doi:10.1038/srep05953.

A.F.S. Silva, F.R.P. Rocha, A novel approach to detect milk adulteration based on the determination of protein content by smartphone-based digital image colorimetry, Food Control. 115 (2020) 107299. doi:10.1016/j.foodcont.2020.107299.

G.K. Özdemir, A. Bayram, V. Kiliç, N. Horzum, M.E. Solmaz, Smartphone-based detection of dyes in water for environmental sustainability, Anal. Methods. 9 (2017) 579–585. doi:10.1039/c6ay03073d.

M. Trojanowicz, Modern Chemistry & Applications Mobile-Phone Based Chemical Analysis - Instrumental Innovations and, 5 (2017) 2–5. doi:10.4172/2329-6798.1000.

S. Álvaro, G. Marín, S. Vincent, Á.G. Marín, W. Van Hoeve, P. García-sánchez, N. Convine, A. Rosser-james, M. Tyler, K. Bandoo, L. Warncke, A. Lee, V. Vogel, Lab on a Chip Lab on a Chip, Lab Chip. 15 (2013) 4491–4498. doi:10.1039/c2lc41193h.

R.H. Tang, H. Yang, J.R. Choi, Y. Gong, S.S. Feng, B. Pingguan-Murphy, Q.S. Huang, J.L. Shi, Q.B. Mei, F. Xu, Advances in paper-based sample pretreatment for point-of-care testing, Crit. Rev. Biotechnol. 37 (2017) 411–428. doi:10.3109/07388551.2016.1164664.

T. Tatarchuk, M. Naushad, J. Tomaszewska, P. Kosobucki, M. Myslin, H. Vasylyeva, P. Ścigalski, Adsorption of Sr(II) ions and salicylic acid onto magnetic magnesium-zinc ferrites: isotherms and kinetic studies, Environ. Sci. Pollut. Res. 27 (2020) 26681–26693. doi:10.1007/s11356-020-09043-1.

P. Taylor, M. Naushad, A. Mittal, M. Rathore, V. Gupta, Desalination and Water Treatment Ion-exchange kinetic studies for Cd ( II ), Co ( II ), Cu ( II ), and Pb ( II ) metal ions over a composite cation exchanger, (2014) 37–41. doi:10.1080/19443994.2014.904823.

M. Naushad, Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J. 235 (2014) 100–108. doi:10.1016/j.cej.2013.09.013.

S. Levin, S. Krishnan, S. Rajkumar, N. Halery, P. Balkunde, Monitoring of fluoride in water samples using a smartphone, Sci. Total Environ. 551–552 (2016) 101–107. doi:10.1016/j.scitotenv.2016.01.156.

I. Hussain, K.U. Ahamad, P. Nath, Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water, Anal. Chem. 89 (2017) 767–775. doi:10.1021/acs.analchem.6b03424.

S. Sumriddetchkajorn, K. Chaitavon, Y. Intaravanne, Mobile-platform based colorimeter for monitoring chlorine concentration in water, Sensors Actuators B Chem. 191 (2014) 561–566. doi:10.1016/J.SNB.2013.10.024.

X. Li, B. Liu, Z. Hu, P. Liu, K. Ye, J. Pan, X. Niu, Smartphone-assisted off ─ on photometric determination of phosphate ion based on target-promoted peroxidase-mimetic activity of porous Ce x Zr 1-x O 2, Environ. Res. 189 (2020) 109921. doi:10.1016/j.envres.2020.109921.

W. Xiao, M. Xiao, Q. Fu, S. Yu, H. Shen, H. Bian, Y. Tang, A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor, Sensors (Switzerland). 16 (2016). doi:10.3390/s16111871.

M. Sargazi, M. Kaykhaii, Application of a smartphone based spectrophotometer for rapid in-field determination of nitrite and chlorine in environmental water samples, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 227 (2020) 117672. doi:10.1016/j.saa.2019.117672.

K. Chaisiwamongkhol, S. Labaidae, S. Pon-in, S. Pinsrithong, T. Bunchuay, A. Phonchai, Smartphone-based colorimetric detection using gold nanoparticles of sibutramine in suspected food supplement products, Microchem. J. 158 (2020) 105273. doi:10.1016/j.microc.2020.105273.

J.R. Choi, Z. Liu, J. Hu, R. Tang, Y. Gong, S. Feng, H. Ren, T. Wen, H. Yang, Z. Qu, B. Pingguan-Murphy, F. Xu, Polydimethylsiloxane-Paper Hybrid Lateral Flow Assay for Highly Sensitive Point-of-Care Nucleic Acid Testing, Anal. Chem. 88 (2016) 6254–6264. doi:10.1021/acs.analchem.6b00195.

A. Shahvar, M. Saraji, D. Shamsaei, Smartphone-based on-cell detection in combination with emulsification microextraction for the trace level determination of phenol index, Microchem. J. 154 (2020) 104611. doi:10.1016/j.microc.2020.104611.

M.J.A. Lima, M.K. Sasaki, O.R. Marinho, T.A. Freitas, R.C. Faria, B.F. Reis, F.R.P. Rocha, Spot test for fast determination of hydrogen peroxide as a milk adulterant by smartphone-based digital image colorimetry, Microchem. J. 157 (2020) 105042. doi:10.1016/j.microc.2020.105042.

H. Kim, Y. Jung, I.J. Doh, R.A. Lozano-Mahecha, B. Applegate, E. Bae, Smartphone-based low light detection for bioluminescence application, Sci. Rep. 7 (2017) 1–11. doi:10.1038/srep40203.

N.V. Danyliuk, T.R. Tatarchuk, A.V. Shyichuk, Batch Microreactor for Photocatalytic Reactions Monitoring, Phys. Chem. Solid State. 2 (2020) 338–346. doi:https://doi.org/10.15330/pcss.21.2.338-346.

Z. Shayegan, C.S. Lee, F. Haghighat, Effect of surface fluorination of P25-TiO2 coated on nickel substrate for photocatalytic oxidation of methyl ethyl ketone in indoor environments, J. Environ. Chem. Eng. 7 (2019) 103390. doi:10.1016/j.jece.2019.103390.

H. Colzani, Q.E.A.G. Rodrigues, C. Fogaça, J.L.N. Gelinski, E.R. Pereira-Filho, E.M. Borges, Determinação de fosfato em refrigerantes utilizando um scanner de mesa e análise automatizada de dados: um exemplo didático para ensino de química, Vol. 40, 833-839, (2017) doi:10.21577/0100-4042.20170035.

J.H. Santos Neto, I.S.A. Porto, M.P. Schneider, A.M.P. dos Santos, A.A. Gomes, S.L.C. Ferreira, Speciation analysis based on digital image colorimetry: Iron (II/III) in white wine, Talanta. 194 (2019) 86–89. doi:10.1016/J.Talanta.2018.09.102.

S. Šafranko, P. Živković, A. Stanković, M. Medvidović-Kosanović, A. Széchenyi, S. Jokić, Designing ColorX, Image Processing Software for Colorimetric Determination of Concentration, To Facilitate Students’ Investigation of Analytical Chemistry Concepts Using Digital Imaging Technology, J. Chem. Educ. 96 (2019) 1928–1937. doi:10.1021/acs.jchemed.8b00920.

I.F. Mironyuk, L.M. Soltys, T.R. Tatarchuk, V.I. Tsinurchyn, Ways to Improve the Efficiency of ТіО2-based Photocatalysts (Review), Phys. Chem. Solid State. 21 (2020) 300–311. doi:https://doi.org/10.15330/pcss.21.2.300-311.

T. Tatarchuk, A. Peter, B. Al-Najar, J. Vijaya, M. Bououdina, Photocatalysis: Activity of Nanomaterials, in: C.M. Hussain, A.K. Mishra (Eds.), Nanotechnol. Environ. Sci., Wiley-VCH Verlag GmbH & Co. KGaA, Germany, Weinheim, 2018: pp. 209–292. doi:10.1002/9783527808854.ch8.

R. Chen, X. Zhang, H. Liu, X. Song, Y. Wei, Photodegradation of Rhodamine B in α-FeOOH/oxalate under light irradiation, RSC Adv. 5 (2015) 76548–76555. doi:10.1039/c5ra13586a.

Q. Wang, J. Lian, Q. Ma, Y. Bai, J. Tong, J. Zhong, R. Wang, H. Huang, B. Su, Photodegradation of Rhodamine B over a novel photocatalyst of feather keratin decorated CdS under visible light irradiation, New J. Chem. 39 (2015) 7112–7119. doi:10.1039/c5nj00987a.

L. Zou, X. Shen, Q. Wang, Z. Wang, X. Yang, M. Jing, Improvement of catalytic activity and mechanistic analysis of transition metal ion doped nanoCeO2 by aqueous Rhodamine B degradation, J. Mater. Res. 30 (2015) 2763–2771. doi:10.1557/jmr.2015.263.

A. Alshammari, A. Bagabas, M. Assulami, Photodegradation of rhodamine B over semiconductor supported gold nanoparticles: The effect of semiconductor support identity, Arab. J. Chem. 12 (2019) 1406–1412. doi:10.1016/j.arabjc.2014.11.013.

N. Guo, H. Liu, Y. Fu, J. Hu, Preparation of Fe2O3 nanoparticles doped with In2O3 and photocatalytic degradation property for rhodamine B, Optik (Stuttg). 201 (2019) 163537. doi:10.1016/j.ijleo.2019.163537.

Published
2020-12-31
How to Cite
[1]
DanyliukN., TatarchukT. and ShyichukA. 2020. Estimation of photocatalytic degradation rate using smartphone based analysis. Physics and Chemistry of Solid State. 21, 4 (Dec. 2020), 727-736. DOI:https://doi.org/10.15330/pcss.21.4.727-736.
Section
Scientific articles