Development of Spark Plasma Syntering (SPS) technology for preparation of nanocrystalline p-type thermoelctrics based on (BiSb)2Te3

  • O. Kostyuk Vasyl Stefanyk Precarpathian National University
  • B. Dzundza Vasyl Stefanyk Precarpathian National University
  • M. Maksymuk AGH University of Science and Technology
  • V. Bublik Moscow Institute of Steel and Alloys, National University of Science and Technology
  • L. Chernyak University of Central Florida
  • Z. Dashevsky Ben-Gurion University of the Negev
Keywords: Bi0.5Sb1.5Te3, Spark plasma sintering (SPS), thermoelectric properties, thermoelectric figure of merit

Abstract

Bismuth antimony telluride is the most commonly used commercial thermoelectric material for power generation and refrigeration over the temperature range of 200–400 K. Improving the performance of these materials is a complected balance of optimizing thermoelectric properties. Decreasing the grain size of Bi0.5Sb1.5Te3 significantly reduces the thermal conductivity due to the scattering phonons on the grain boundaries. In this work, it is shown the advances of spark plasma sintering (SPS) for the preparation of nanocrystalline p-type thermoelectrics based on Bi0.5Sb1.5Te3 at different temperatures (240, 350, 400oC). The complex study of structural and thermoelectric properties of Bi0.5Sb1.5Te3 were presented. The high dimensionless thermoelectric figure of merit ZT ~ 1 or some more over 300–400 K temperature range for nanocrystalline p-type Bi0.5Sb1.5Te3 was obtained.

References

A.F. Ioffe, B.Ya. Moizes, L.S. Stilbans, Sov. State Physics 11, 2834 (1960).

M.G. Lavrentev, V.B. Osvensky, H.S. Kim, I.T. Witting, G.J. Snyder, V.T. Bublok, Appl. Mat. 4, 104807 (2016) (https://doi.org/10.1063/1.4953173).

Y. Gelbstein, Z. Dashevsky, M.P. Dariel, J. Appl. Phys. 104, 33 (2008) (https://doi.org/10.1063/1.2963359).

I.T. Witting, J.A. Grovogui, V.P. Dravid, G.J. Snyder, J. of Materiomics 6, 532 (2020) (https://doi.org/10.1016/j.jmat.2020.04.001).

Z. Dashevsky, S. Skipidarov, Investigating the performance of bismuth– antimony telluride, in Novel Materials and Deice Design Concepts. Thermoelectric power generation, edited by S. Skipidarov, M. Nikitin (Springer, New York, 2019).

B. Poudel, Q. Hao, Y. Ma, X.Y. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 6342 (2008) (https://doi.org/10.1126/science.1156446).

O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, M.P. Dariel, J. of Appl. Phys. 101, 25 (2007) (https://doi.org/10.1063/1.2743816).

O. Ben-Yehuda, Y. Gelbstein, Z. Dashevsky, M.P. Dariel, Proceedings ICT 2007. Jeju. 82 (2007) (https://doi.org/10.1109/ICT.2007.4569429).

Yu Pan, Umut Aydemir, Jann A. Grovogui, Ian T. Witting, Riley Hanus, Yaobin Xu, Jinsong Wu, Chao-Feng Wu, Fu-Hua Sun, Hua-Lu Zhuang, Jin-Feng Dong, Jing-Feng Li, Vinayak P. Dravid, G. Jeffrey Snyder, Adv. Mater. 2018. 1802016, 1 (2018) (https://doi.org/10.1002/adma.201802016).

H.J Goldsmid, Materials 7, 2577 (2014) (https://doi.org/10.3390/ma7042577).

B.M. Goltsman, B.A. Kudinov, I.A. Smirnov, Semiconductor Thermoelectric Materials Based on Bi2Te3 (Nauka, Moskow, 1972).

D. Freik, T. Parashchuk, B. Volochanska, ‎J. Cryst. Growth. 402, 90 (2014) (https://doi.org/10.1016/j.jcrysgro.2014.05.005).

I.V. Horichok, L.I. Nykyruy, T.O. Parashchuk, S.D. Bardashevska, and M.A. Pylyponuk, Mod. Phys. Lett. B 30, 1650172 9 (2016) (https://doi.org/10.1142/S0217984916501724).

G. Chen, M.S. Dresselhaus, J.P. Fleurial, T. Cail lat, Int. Mater. Rev. 48, 45 (2003) (https://doi.org/10.1179/095066003225010182).

M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, L. Hohyun, D. Wang, R. Zhifeng, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007) (https://doi.org/10.1002/adma.200600527).

Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Adv. Funct. Mater. 20, 357 (2010) (https://doi.org/10.1002/adfm.200901512).

G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectric Basic Principles and New Material Development (Springer, New York, 2001).

G.J. Snyder, E.S. Toberer. Complex thermoelectric materials. Nat. Mater. 7, 105 (2008) (https://doi.org/10.1142/9789814317665_0016).

T. Parashchuk, O. Kostyuk, L. Nykyruy, Z. Dashevsky, J. Mat. Chem. and Phys. 253, 123427 (2020) (https://doi.org/10.1016/j.matchemphys.2020.123427).

N. Bomshtein, G. G. Spiridonov, Z. Dashevsky, Y. Gelbstein, Journal of Electronic Materials 41. 1546 (2012) (https://doi.org/10.1007/s11664-012-1950-8).

T. Parashchuk, Z. Dashevsky, K. Wojciechowski, J. Appl. Phys. 125, 245103 (2019) (doi:10.1063/1.5106422).

K. Wojciechowski, T. Parashchuk, B. Wiendlocha, O. Cherniushok, Z. Dashevsky, J. Mat. Chem. C. 8, 13270 (2020) (https://doi.org/10.1039/D0TC03067H).

J. Jaklovszky, R. Ionescu, N. Nistor, A. Chiculit, Phys Status Solidi 7, 329 (1975) (https://doi.org/10.1002/pssa.2210270202).

Y. Lan Y, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 9, 1419 (2009) (https://doi.org/10.1021/nl803235n).

Published
2020-12-30
How to Cite
[1]
KostyukO., DzundzaB., MaksymukM., BublikV., ChernyakL. and DashevskyZ. 2020. Development of Spark Plasma Syntering (SPS) technology for preparation of nanocrystalline p-type thermoelctrics based on (BiSb)2Te3. Physics and Chemistry of Solid State. 21, 4 (Dec. 2020), 628-634. DOI:https://doi.org/10.15330/pcss.21.4.628-634.
Section
Scientific articles

Most read articles by the same author(s)