Electrical properties of strained germanium nanofilm

  • S.V. Luniov Lutsk National Technical University
  • P.F. Nazarchuk Lutsk National Technical University
  • O.V. Burban Volyn Professional College of the National University of Food Technologies
Keywords: internal mechanical strains, strained germanium nanofilms, quantum-dimensional effects, intrinsic carrier concentration, specific conductivity, electron and hole mobility


Dependences of the concentration of intrinsic current carriers, electron and hole mobilities and specific conductivity for strained germanium nanofilms grown on the Si, Ge(0,64)Si(0,36) and Ge(0,9)Si(0,1) substrates with crystallographic orientation (001), on their thickness at different temperatures were calculated on the basis of the statistics of non-degenerate two-dimensional electron and hole gas in semiconductors. The electrical properties of such nanofilms are determined by the peculiarities of their band structure. It is established that the effects of dimensional quantization, the probability of which increases with decreasing temperature, become significant for germanium nanofilms with the thickness of d<7 nm. The presence of such effects explains the significant increase in the specific conductivity and the decrease in the intrinsic concentration of current carriers for these nanofilms. The electron and hole mobility in the investigated germanium nanofilms is lower in relation to such unstrained nanofilms. Only for the strained germanium nanofilm with the thickness of d> 50 nm grown on the Ge(0,9)Si(0,1) substrate, an increase in the hole mobility at room temperature of more than 1.5 times was obtained. The obtained results of the electrical properties of strained germanium nanofilms can be used in producing on their basis new elements of nanoelectronic.

Author Biographies

P.F. Nazarchuk , Lutsk National Technical University

Department of Physics and Higher Mathematics, associate professor 

O.V. Burban, Volyn Professional College of the National University of Food Technologies

Department Computer Science and Computer Engineering,  teacher


T. Munawar, M.S. Nadeem, F. Mukhtar, A. Azhar, M. Hasan, K. Mahmood, A. Hussain, A. Ali, M.I. Arshad, M. Ajazun Nabi, & F. Iqbal, Physica B: Condensed Matter. 602, 412555 (2021) https://doi.org/10.1016/j.physb.2020.412555)

M.I. Arshad, S. Arshad, K. Mahmood, A. Ali,N. Amin, Umaid-ur-Rehman, M. Isa, A. Akram, N.Sabir, & M. Ajaz-un-Nabi, Physica B: Condensed Matter. 599, 412496 (2020) https://doi.org/10.1016/j.physb.2020.412496.

C. Ma, & Y. Zhang, Separation and Purification Technology 258, 118024 (2021) https://doi.org/10.1016/j.seppur.2020.118024.

V.K. Jha, A.K. Sijo, S.N. Alam, & M. Roy, Journal of Superconductivity and Novel Magnetism 33(2), 455 (2019) https://doi.org/10.1007/s10948-019-05206-5.

O.M. Uhorchuk, V.V. Uhorchuk, M.V. Karpets, & M.I. Hasyuk, Journal of Nano- and Electronic Physics 7(2), 1 (2015).

B.K. Ostafiychuk, I.M. Gasyuk, L.S. Kaikan, V.V. Ugorchuk, & P.O. Sulym, Electrochemical Power Engineering 11(1), 18 (2011).

A.K. Sijo, N. Lakshmi, K. Venugopalan, D.P. Dutta, & V.K. Jain, Advanced Porous Materials 2(3), 189 (2015) https://doi.org/10.1166/apm.2014.1071.

L.S. Kaykan, Ju.S. Mazurenko, & V.I. Makovysyn, Applied Nanoscience 10(8), 2739 (2020) https://doi.org/10.1007/s13204-020-01259-4.

K. Ishii, S. Doi, R. Ise, T. Mandai, Y. Oaki, S. Yagi, & H. Imai, Journal of Alloys and Compounds 816, 152556 (2020) https://doi.org/10.1016/j.jallcom.2019.1525.

S. Ikram, J. Jacob, M.I. Arshad, K. Mahmood, A. Ali, N. Sabir, N. Amin, S. Hussain, Ceramics International 45(3), 3563 (2019) https://doi.org/10.1016/j.ceramint.2018.11.015.

A.K. Sijo, V.K. Jha, L.S. Kaykan, & D.P. Dutta, Journal of Magnetism and Magnetic Materials 497, 166047 (2020) https://doi.org/10.1016/j.jmmm.2019.166047.

R. Singh Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Journal of Magnetism and Magnetic Materials 447, 48 (2018) https://doi.org/10.1016/j.jmmm.2017.09.033.

L. Kaykan, A.K. Sijo, A. Żywczak, J. Mazurenko, K. Bandura, Applied Nanoscience 10(12), 4577 (2020) https://doi.org/10.1007/s13204-020-01413-y.

K. Wieczerzak, A. Żywczak, J. Kanak, & P. Bała, Materials Characterization 132, 293(2017) https://doi.org/10.1016/j.matchar.2017.08.030.

W. Maziarz, A. Wójcik, P. Czaja, A. Żywczak, J. Dutkiewicz, Ł. Hawełek, E. Cesari, Journal of Magnetism and Magnetic Materials 412, 123 (2016) https://doi.org/10.1016/j.jmmm.2016.03.089.

S.V. Luniov, Yu. A. Udovytska, Yu. V. Koval, O.V. Burban, IEEE 9th International Conference on Nanomaterials: Applications & Properties (IEEE, Odesa, 2019) https://doi.org/10.1109/NAP47236.2019.216992.

S.V. Luniov, Physica E 118, 113954 (2020) https://doi.org/10.1016/j.physe.2020.113954.

U. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Netherlands, 2008).

S.V. Luniov, Journal of Nano-and Electronic Physics. 11 (2), 02023 (2019) https://doi.org/10.21272/jnep.11(2).02023.

S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons, 2005).

How to Cite
LuniovS., Nazarchuk P. and BurbanO. 2021. Electrical properties of strained germanium nanofilm. Physics and Chemistry of Solid State. 22, 2 (May 2021), 313-320. DOI:https://doi.org/10.15330/pcss.22.2.313-320.
Scientific articles (Physics)