First-Principles Calculations of Stable Geometric Configuration and Thermodynamic Parameters of Cadmium Sulfide Thin-Film Condensates

  • Z. Oleksyn Vasyl Stefanyk Precarpathian National University
  • B. Naidych Vasyl Stefanyk Precarpathian National University
  • O. Chernikova Kryvyi Rih National University
  • L. Glowa Rzeszow University
  • Y. Ogorodnik Radiation Monitoring Devices, Inc.
  • M. Solovyov Lviv Polytechnic National University
  • V. Vashchynskyi Lviv Polytechnic National University
  • R. Yavorskyi Vasyl Stefanyk Precarpathian National University
  • G. Il’chuk Lviv Polytechnic National University
Keywords: cadmium sulfide, crystal structure, wurtzite, thermodynamic properties

Abstract

Thin-film CdS layers obtained by the open evaporation method in vacuum are considered and cluster models for calculation of crystal, band structure and thermodynamic parameters are proposed. The thermodynamic parameters of the formation energy ΔE, enthalpy of formation ΔH, Gibbs energy ΔG, entropy ΔS and specific heat capacities at constant pressure and volume for cubic and hexagonal crystallographic modifications are determined. The stable crystal structure for cadmium sulfide was determined from the analysis of Gibbs energy temperature dependences for the sphalerite and wurtzine phases.

References

L. Nykyruy, V. Yakubiv, G. Wisz, I. Hryhoruk, Z. Zapukhlyak, R. Yavorskyi, Renewable Energy – Resources, Challenges and Applications. Сhapter: Energy policy at the EU – non-EU border: critical analysis, opportunities and improve for the future. Edited by Dr. Mansour Al Qubeissi. (InTechOpen. London. ISBN 978-1-78984-284-5) (2020) https://doi.org/10.5772/intechopen.91686.

B.K. Ghosh, I. Saad, K.T.K. Teo, and S.K. Ghosh, Optik 206, 164278 (2020) https://doi.org/10.1016/j.ijleo.2020.164278.

G. Wisz, I. Virt, P. Sagan, P. Potera, R. Yavorskyi, Nanoscale Research Letters, 12 (1), 253 (2017); https://doi.org/10.1186/s11671-017-2033-9.

F.B. Baghsiyahi, A. Akhtar, M. Yeganeh, International Journal of Modern Physics B, 32 (20), 1850207 (2018); https://doi.org/10.1142/S0217979218502077.

J.P. Sawant, R.J. Deokate, H.M. Pathan, R.B. Kale, Engineered Science, 13, 51-64 (2021); https://doi.org/10.30919/es8d1147.

Y. Zheng, B. Sadeghimakki, E. Piano, S. Sivoththaman, 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC, 2019, June) pp. 1806-1812; https://doi.org/10.1109/PVSC40753.2019.8980483.

M.E. Calixto, P.J. Sebastian, R.N. Bhattacharya, R. Noufi, Solar Energy Materials and Solar Cells, 59(1-2), 75-84 (1999); https://doi.org/10.1016/S0927-0248(99)00033-1.

A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Progress in Crystal Growth and Characterization of Materials, 52(4), 247-279 (2006); https://doi.org/10.1016/j.pcrysgrow.2006.09.001.

A.I. Kashuba, H.A. Ilchuk, R.Y. Petrus, B. Andriyevsky, I.V. Semkiv, E.O. Zmiyovska, Applied Nanoscience, 1-8 (2021); https://doi.org/10.1007/s13204-020-01635-0.

P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Materials Research Bulletin, 96, 188-195 (2017); https://doi.org/10.1016/j.materresbull.2017.04.026.

S. Marjani, S. Khosroabadi, M. Sabaghi, Optics & Photonics Journal 6(2), 15 (2016); https://doi.org/10.4236/opj.2016.62003.

L.I. Nykyruy, B.P. Naidych, O.M. Voznyak, T.O. Parashchuk, R.V. Ilnytskyi, Semiconductor Physics, Quantum Electronics and Optoelectronics, 22(2), 156–164 (2019); https://doi.org/10.15407/spqeo22.02.156.

L. Nykyrui, Y. Saliy, R. Yavorskyi, Y. Yavorskyi, V. Schenderovsky, G. Wisz, S. Górny, 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP) (pp. 01PCSI26-1); https://doi.org/10.1109/NAP.2017.8190161.

D. Pegu, J. Deb, D. Paul, U. Sarkar, Computational Condensed Matter, 14, 40-45 (2018); https://doi.org/10.1016/j.cocom.2018.01.001.

M. Isik, H.H. Gullu, S. Delice, M. Parlak, N.M. Gasanly, Materials Science in Semiconductor Processing, 93, 148-152 (2019); https://doi.org/10.1016/j.mssp.2019.01.001.

G.A. Il’chuk, V.V. Kusnezh, V.Yu. Rud, Yu.V. Rud, P.Yo. Shapowal, R.Yu. Petrus’, Semiconductors, 44(3), 318–320 (2010); https://doi.org/10.1134/S1063782610030085.

Z.B. Gutierrez, P. K. G Zayas-Bazán, O. De Melo, D. Moure-Flores, J. A. Andraca-Adame, L. Moreno-Ruiz, H. Martínez-Gutiérrez, S. Gallardo, J. Sastré-Hernández, G. Contreras-Puente, Materials, 11(10), 1788 (2018); https://doi.org/10.3390/ma11101788.

I.E. Tinedert, F. Pezzimenti, M.L. Megherbi, A. Saadoune, Optik, 208, 164112 (2020); https://doi.org/10.1016/j.ijleo.2019.164112.

L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P. Potera, Optical Materials, 92, 319-329 (2019); https://doi.org/10.1016/j.optmat.2019.04.029.

A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Journal of Materials Science: Materials in Electronics, 28(4), 3254-3263 (2017); https://doi.org/10.1007/s10854-016-5916-0.

R.Y. Petrus, H.A. Ilchuk, A.I. Kashuba, I.V. Semkiv, E.O. Zmiiovska, F.M. Honchar, Journal of Applied Spectroscopy, 87 (1), 35–40 (2020); https://doi.org/10.1007/s10812-020-00959-7.

A. Mutalikdesai, S.K. Ramasesha, Thin Solid Films, 632, 73-78 (2017); https://doi.org/10.1016/j.tsf.2017.04.036.

W. Kohn, A.D. Becke, R.G. Parr, The Journal of Physical Chemistry, 100 (31), 12974–12980 (1996); https://doi.org/10.1021/jp960669l.

M. Tsubaki, T. Mizoguchi, Physical Review Letters, 125 (20) (2020); https://doi.org/10.1103/physrevlett.125.206401.

http://sites.google.com/a/kdpu.edu.ua/calculationphysics/.

W. Kohn, L.J. Sham, Physical Review, 140 (4A), A1133–A1138 (1965); 10.1103/physrev.140.a1133.

G.B. Bachelet, D.R. Hamann, M. Schlüter, Physical Review B, 26 (8), 4199–4228 (1982); https://doi.org/10.1103/physrevb.26.4199.

G.M.J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J.E. Deustua, D.G. Fedorov, J.R. Gour, A.O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S.S. Leang, H. Li, W. Li, J.J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B.Q. Pham, P. Piecuch, D. Poole, S.R. Pruitt, A.P. Rendell, L.B. Roskop, K. Ruedenberg, T. Sattasathuchana, M.W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J.L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev, M.S. Gordon, J. Chem. Phys. 152, 154102 (2020); https://doi.org/10.1063/5.0005188.

W.J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 81, 6026 (1984); https://doi.org/10.1063/1.447604.

A.D. Becke. J. Chem. Phys. 98 (2), 1372 (1993); https://doi.org/10.1063/1.464304.

C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37 (2), 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.

D. Freik, T. Parashchuk, B. Volochanska, Journal of Crystal Growth, 402, 90–93 (2014); https://doi.org/10.1016/j.jcrysgro.2014.05.005.

B. Naidych, T. Parashchuk, I. Yaremiy, M. Moyseyenko, O. Kostyuk, O. Voznyak, Z. Dashevsky, L. Nykyruy, Journal of Electronic Materials, 50(2), 580–591 (2021); https://doi.org/10.1007/s11664-020-08561-5.

Web source: https://www.webelements.com/hydrogen/thermochemistry.html.

N.S. Priya, S.S.P. Kamala, V. Anbarasu, S.A. Azhagan, R. Saravanakumar, Materials Letters, 220, 161-164 (2018); https://doi.org/10.1016/j.matlet.2018.03.009.

B. Li, J. Xu, W. Chen, D. Fan, Y. Kuang, Z. Ye, W. Zhou, H. Xie, Journal of Alloys and Compounds, 743, 419-427 (2018); https://doi.org/10.1016/j.jallcom.2018.02.021.

R.P. Beyer, M.J. Ferrante, R.V. Mrazek, J. Chem.Thermodynamic, 15 (9), 827-834 (1983); https://doi.org/10.1016/0021-9614(83)90088-5.

O. Vigil, I. Riech, M. Garcia-Rocha, O. Zelaya-Angel, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 15 (4), 2282-2286 (1997); https://doi.org/10.1116/1.580735 .

R. Lozada-Morales, O. Zelaya-Angel, Thin Solid Films, 281, 386-389 (1996); https://doi.org/10.1016/0040-6090(96)08621-X.

О Zelaya-Angel, H. Yee-Madeira, R. Lozada-Morales, Phase Transirions. 70, 11-17 (1999); https://doi.org/10.1080/01411599908241336.

O. Zelaya‐Angel, J.J. Alvarado‐Gil, R. Lozada‐Morales, H. Vargas, A. Ferreira da Silva, Applied Physics Letters, 64(3), 291-293 (1994); https://doi.org/10.1063/1.111184.

M. Kim, H. Kim, S. Lee, S. Sohn, Molecular Crystals and Liquid Crystals, 564(1), 162-168 (2012); https://doi.org/10.1080/15421406.2012.691737.

B.B. Kadhim, M.A. Abdulsattar, A.M. Ali, International Journal of Modern Physics B, 33(16), 1950163 (2019); https://doi.org/10.1142/S0217979219501637.

C.G. Torres-Castanedo, J. Márquez-Marín, R. Castanedo-Pérez, G. Torres-Delgado, M.A. Aguilar-Frutis, S. Arias-Cerón, O. Zelaya-Ángel, Journal of Materials Science: Materials in Electronics, 31 (19), 16561-16568 (2020); https://doi.org/10.1007/s10854-020-04211-y.

Published
2021-09-26
How to Cite
[1]
OleksynZ., NaidychB., ChernikovaO., GlowaL., OgorodnikY., SolovyovM., VashchynskyiV., YavorskyiR. and Il’chukG. 2021. First-Principles Calculations of Stable Geometric Configuration and Thermodynamic Parameters of Cadmium Sulfide Thin-Film Condensates. Physics and Chemistry of Solid State. 22, 3 (Sep. 2021), 568-576. DOI:https://doi.org/10.15330/pcss.22.3.568-576.
Section
Scientific articles (Physics)

Most read articles by the same author(s)