Application of Titanium Dioxide for Zirconium Ions Adsorption and Separation from a Multicomponent Mixture

  • H. Vasylyeva Uzhhorod national university
  • I. Mironyuk Vasyl Stefanyk Precarpathian National University
  • I. Mykytyn Vasyl Stefanyk Precarpathian National University
  • M. Strilchuk NAS of Ukraine Institute for Nuclear Research
  • I. Maliuk NAS of Ukraine Institute for Nuclear Research
  • V. Tryshyn NAS of Ukraine Institute for Nuclear Research
  • Kh. Savka Vasyl Stefanyk Precarpathian National University
Keywords: mesoporous TiO2, zirconium ions, adsorption, separation, ICP-MS

Abstract

This work studies the adsorption of zirconium ions by mesoporous titanium dioxide and by sodium-modified mesoporous titanium dioxide. Experimental maximal adsorption values of zirconium ions by H-TiO2 and Na-TiO2 were found to be 64 mg/g and 109,5 mg/g respectively. This process depends on the interaction time, equilibrium concentration of zirconium ions and acidity of the solution. Adsorption kinetics fit well into the diffusion kinetic model and indicate a several stages of zirconium ions adsorption. Equilibrium adsorption of zirconium ions is well described by the Langmuir's adsorption theory for both adsorbents. The results obtained by inductively coupled plasma mass spectrometry showed that the investigated adsorbent selectively adsorb zirconium ions from the mixture with strontium and yttrium ions in the range of solution pH = 0-1. The percentage of maximum extraction of zirconium ions is 86,61% for H-TiO2 and 94,11% for Na-TiO2. This fact is extremely valuable for nuclear forensics or for the determination of 90Sr in low activity background samples.

References

I.F. Mironyuk, I.M. Mykytyn, O.Ye. Kaglyan, D.I. Gudkov, Nucl. Phys. At. Energy 21(4) 347 (2020); https://doi.org/10.15407/jnpae2020.04.347.

Public health statement: strontium. https://www.atsdr.cdc.gov/ ToxProfles/tp159-c1-b.pdf. Accessed 1 Feb (2019).

Kevin John Swearingen, Nathalie A. Wall, Journal of Radioanalytical and Nuclear Chemistry 320, 71 (2019); https://doi.org/10.1007/s10967-019-06444-6.

N. Kavasi, S.K. Sahoo, H. Arae, T. Aono, Z. Palacz, Nature Scientific Reports 9, 16532 (2019); https://doi.org/10.1038/s41598-019-52890-3.

Scott C. Wilschefski, Matthew R Baxter, Clin. I. Biochem Rev 40(3) 115 (2019); https:/doi.org/10.33176/AACB-19-00024.

G. Favre, R. Brennetot, et al., International Journal of Mass Spectrometry 265(1) 15 (2007); https://doi.org/10.1016/j.ijms.2007.04.012.

Zattoni Ana Paula, Separation and Analysis of Sr-90 and Zr-90 for Nuclear Forensic Applications. (Laval University, Quebec, Canada, 2015); 31654.pdf (ulaval.ca) http://hdl.handle.net/20.500.11794/26052.

Hendee William R., Ritenour E. Russel, Medical Imaging Physics, 4th edition. (A John Wiley &Sons inc. publication, New York, 353, 2002). ISBN: 9780471221159; https://www.doi.org.10.1002/0471221155.

I. Mironyuk et al., Journal of Molecular Liquids, 282, 587 (2019); https://doi:10.1016/J.MOLLIQ.2019.03.026.

I. Mironyuk et al., Journal of Environmental Chemical Engineering 7(6) 103430 (2019); https://www.doi.org/10.1016/j.jece.2019.103430.

I. Mironyuk et al., Journal of Molecular Liquids, 285, 742 (2019); https://www.doi.org/10.1016/j.molliq.2019.04.111.

I. Mironyuk, I. Mykytyn, H. Vasylyeva, Kh. Savka, Journal of Molecular Liquids 316(10) 113840 (2020); https://www.doi.org/10.1016/j.molliq.2020.113840.

I.F. Mironyuk, H.V. Vasylyeva, Sorption removal of Sr2+ and Y3+ ions from aqueous solutions by a TiO2 – based sorbent. RAD Conf. Proc. 3 (2018). P.15; https://doi.org/10.21175/RadProc.2018.04.

H. Vasylyeva, I. Mironyuk, I. Mykytyn, Kh. Savka, Applied Radiation and Isotopes 109473 (2020); https://doi.org/10.1016/j.apradiso.2020.109473.

H. Vasylyeva, I. Mironyuk, I. Mykytyn, Chemistry, physics, and technology of surface 10(4) 446 (2019); https://www.doi.org:10.15407/hftp10.04.446.

G. Schwarzenbach, H. Flaschka, Complexometric titrations. Translated [from the German] and rev. in collaboration with the authors by H.M.N.H. (Irving, London, Methuen, P. 490 (1969). ISBN: 0416192904 9780416192902.

Arthur W. Adamson, Physical chemistry of surfaces (3rd edition) (Wiley‐Interscience, New York, 698, 1976); https://doi.org/10.1002/pol.1977.130151014.

W. Plazinski, W. Rudzinski, A. Plazinska, Advances in Colloid and Interface Science 152(1-2), 2 (2009); https://doi.org/10.1016/j.cis.2009.07.009.

F.-Ch. Wu, R.-L. Tseng, R.-Sh. Juang, Chemical Engineering Journal 150(2-3), 366 (2009); https://doi.org/10.1016/j.cej.2009.01.014.

H.N. Tran, S-J. You, A. Hosseini-Bandegharaei, H-P. Chao, et al., Water Res. 120, 88 (2017).

Fatin Izzaidah Anuar, Tony Hadibarata, Muhammad Syafrudin, Zahra Fona, Biointerface Research in Applied Chemistry 10(1), 4774 (2020); ISSN 2069-5837; https://doi.org/10.33263/BRIAC101.774779.

Shivashanggeeta Kanthasamy, Tony Hadibarata et al., Biointerface Research in Applied Chemistry 10(1), 4706 (2020); ISSN 2069-5837; https://doi.org/10.33263/BRIAC101.706713.

H. Vasylyeva, I. Mironyuk, M. Strilchuk, et al., Biointerface Research in Applied Chemistry 11(5), 13421 (2021); http://dx.doi.org/10.33263/BRIAC115.1342113431.

Atlas of Eh-pH diagrams, (2005). Intercomparison of thermodynamic databases Geological Survey of Japan Open-File Report No.419.

V.E. Staryk et al., Radiochemistry,6(4), 468 (1964). (in Russian).

K.M. Mackay, R.A. Mackay, W. Henderson, Introduction to modern inorganic chemistry 5th edition (Blackie Academic and professional, and imprint of Chapman and Hall, 2-6 Boundary Row, London SE1 8NH, UK, (1996); ISBN 0751403733.

McLain Derek R., Amato Victoria, Sudowe Ralf, J Radioanal. Nucl. Chem. 314(3) 15 (2018); https://www.doi.org:10.1007/s10967-017-5599-x.

Zsolt Varga, Adrian Nicholl, Maria Wallenius, Klaus Mayer, J. Radioanal. Nucl. Chem. 307, 1919 (2015); https://www.doi.org.10.1007/s10967-015-4418-5.

J.L. Steeb, D.G. Graczyk, Y. Tsai, et al., J. Anal. At. Spectrom. 28, 1493 (2013); https://pubs.rsc.org/en/journals/journal/ja.

Published
2021-08-31
How to Cite
[1]
VasylyevaH., MironyukI., MykytynI., StrilchukM., MaliukI., TryshynV. and SavkaK. 2021. Application of Titanium Dioxide for Zirconium Ions Adsorption and Separation from a Multicomponent Mixture. Physics and Chemistry of Solid State. 22, 3 (Aug. 2021), 460-469. DOI:https://doi.org/10.15330/pcss.22.3.460-469.
Section
Scientific articles (Chemistry)