Numerical investigation on erosion wear and strength of main gas pipelines bends

  • Ya.V. Doroshenko Ivano-Frankivsk National Technical University of Oil and Gas
  • G.М. Kogut Ivano-Frankivsk National Technical University of Oil and Gas
  • I.V. Rybitskyi Ivano-Frankivsk National Technical University of Oil and Gas
  • O.S. Tarayevs'kyy Ivano-Frankivsk National Technical University of Oil and Gas
  • T.Yu. Pyrig Ivano-Frankivsk National Technical University of Oil and Gas
Keywords: multiphase flow, bend, gas pipeline, gas - dynamic process, trosion wear, stress state

Abstract

The purpose of this work is to ensuring the strength of main gas pipelines bends by studying the peculiarities of single-phase and multiphase flows movement through the internal cavity, the processes of erosion wear and the wall stress state. The problem of synergistic influence of gas-dynamic processes (uneven pressure distribution in the internal cavity), temperature difference and erosion wear on the stress state of the bends of main gas pipelines was solved by numerical simulation. Based on the results of simulation the processes of bends erosion wear, an algorithm for three-dimensional simulation of bend walls erosion defects was developed. The complex three-dimensional geometric shape of the erosion defects of the bend wall varied according to the rate of erosion wear process. This algorithm made it possible to determine the regularities for the influence of the bend erosion defects magnitude on bends stress state. It was established that considering the maximum depth of bend erosion defects 9.6 mm, 10.5 mm and 11.9 mm, the equivalent stresses in the deepest places of the erosion defect were greater than on the concave side of the bend and in straight sections of the pipeline.

References

M.O. Karpash, A.P. Oliynyk, G.M. Kogut, A.M. Klyun, Science and Innovation 15(6), 73 (2019); https://doi.org/10.15407/scin15.06.079.

N. Aung, T. Yuwono, ASEAN Journal on Science and Technology for Development 30(1&2), 1 (2013); https://doi.org/10.29037/ajstd.344.

M. Toda, N. Kamori, S. Saito, S. Maeda, J. Chem. Eng. Jpn. 5, 4 (1972).

R. Wood, T. Jones, N. Miles, J. Ganeshalingam, Wear 250, 770 (2001); https://doi.org/10.1016/S0043-1648(01)00715-3.

J. Smart, Pipeline and Gas Journal 10, 82 (2007).

Ya. V. Doroshenko, O. M. Karpash, B. N. Hozhaiev, Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch 4(73), 35 (2019); https://doi.org/10.31471/1993-9973-2019-4(73)-35-45.

V.B. Volovetskyi, A.V. Uhrynovskyi, Ya.V. Doroshenko, O.M. Shchyrba, Yu.S. Stakhmych, Journal of Achievements in Materials and Manufacturing Engineering 101(1), 27 (2020); https://doi.org/10.5604/01.3001.0014.4088.

V.B. Volovetskyi, Ya.V. Doroshenko, G.M. Kogut, I.V. Rybitskyi, J.I. Doroshenko, О.M. Shсhyrba, Archives of Materials Science and Engineering 108(1), 24 (2021); https://doi.org/10.5604/01.3001.0015.0250.

V.B. Volovetskyi, Ya.V. Doroshenko, O.S. Tarayevs'kyy, O.M. Shchyrba, J.I. Doroshenko, Yu.S. Stakhmych, Journal of Achievements in Materials and Manufacturing Engineering 105(2), 61 (2021); https://doi.org/10.5604/01.3001.0015.0518.

O. Tarayevs'kyy, Metallurgical and Mining Industry 3, 61 (2013).

O. Tarayevs'kyy, Metallurgical and Mining Industry 3, 68 (2013).

O. Taraevskyy, Metallurgical and Mining Industry 7(2), 62 (2015).

L.S. Shlapak, M.P. Linchevskyi, V.O. Sarkisov, Naftohazova haluz Ukrainy 3, 44 (2014).

M.D. Serediuk, Journal of Achievements in Materials and Manufacturing Engineering 106(2), 77 (2021).

M.D. Serediuk, S.Ya. Hryhorskyi, Neftianoe khoziaistvo 2, 100 (2015).

M. Serediuk, S. Grygorsky, European Journal of Enterprise Technologies 5/2(83), 30 (2016); https://doi.org/10.15587/1729-4061.2016.77190.

І.V. Rybitskyi, V.І. Trofimchuk, G.М. Kogut, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 3, 47 (2020); https://doi.org/10.33271/nvngu/2020-3/047.

Y. Melnychenko, L. Poberezhny, V. Hrudz, V. Zapukhliak, I. Chudyk, T. Dodyk, Lecture Notes in Civil Engineering 102, 241 (2021); https://doi.org/10.1007/978-3-030-58073-5_19.

P. Dutta, S. Saha, N. Nandi, International Journal of Applied Engineering Research 10(11), 128 (2015).

Ya. Doroshenko, I. Rybitskyi, Eastern-European Journal of Enterprise Technologies 1/8(103), 28 (2020); https://doi.org/10.15587/1729-4061.2020.192828.

M. Abdulwahhab, N. Kumar, F. Dakhil, International Journal of Engineering Science and Technology 4(7), 33 (2012).

J. Zhang, J. Kang, J. Fan, J. Gao, Journal of Natural Gas Science and Engineering 32, 334 (2016); https://doi.org/10.1016/j.jngse.2016.04.056.

Ya. Doroshenko, V. Zapukhliak, Ya. Grudz, L. Poberezhny, A. Hrytsanchuk, P. Popovych, O. Shevchuk, Archives of Materials Science and Engineering 101(2), 63 (2020); https://doi.org/10.5604/01.3001.0014.1192.

S. Marie, S. Chapuliot, Y. Kayser, M. Lacire, B. Drubay, B. Barthelet, P. Delliou, V. Rougier, С. Naudin, P. Gilles, M. Triay, International Journal of Pressure Vessels and Piping 84(10-11), 659 (2007); https://doi.org/10.1016/j.ijpvp.2007.05.006.

O.O. Larin, K.E. Potopalska, Праці Одеського політехнічного університету 3(53), 12 (2017); https://doi.org/10.15276/opu.3.53.2017.02.

Ya.V. Doroshenko, Naftohazova enerhetyka 1(33), 36 (2020); https://doi.org/10.31471/1993-9868-2020-1(33)-36-46.

Ya. Doroshenko, V. Zapukhliak, K. Poliarush, R. Stasiuk, S. Bagriy, Eastern-European Journal of Enterprise Technologies 2/1(98), 28 (2019); https://doi.org/10.15587/1729-4061.2019.164351.

K. Squires, J. Eaton, Phys. Fluid 2(7), 1191 (1990); https://doi.org/10.1063/1.857620.

J.O. Hinze, Turbulence (McGraw-Hill, New York, 1975).

I. Finnie, Y. Kabil, Wear 8, 60 (1965); https://doi.org/10.1016/0043-1648(65)90251-6.

R.H. Gallagher, Finite element analysis: Fundamentals (Prentice-Hall, New York, 1975.

Published
2021-09-07
How to Cite
[1]
DoroshenkoY., KogutG., RybitskyiI., Tarayevs’kyyO. and PyrigT. 2021. Numerical investigation on erosion wear and strength of main gas pipelines bends. Physics and Chemistry of Solid State. 22, 3 (Sep. 2021), 551-560. DOI:https://doi.org/10.15330/pcss.22.3.551-560.
Section
Scientific articles (Technology)