Properties of multicomponent (Mn-Ni-Co-Al-Si-Ti) oxide spinel hierarchically organized nanostructures deposited by magnetron sputtering in two temperatures.

  • P. Sagan The John Paul II Catholic University of Lublin
  • M. Frugynskyi Lviv Polytechnic National University
  • R. Mroczka The John Paul II Catholic University of Lublin
  • G. Wisz University of Rzeszow
Keywords: magnetron sputtering, films, hierarchical structure, spinel oxides

Abstract

Multicomponent spinel films were deposited on Ag/Si substrates by magnetron sputtering. Two substrate temperatures were used. XRD diffraction measurements show that the layers are composed of three metals oxides (Mn2O3, NiO, CoO). The presence of spinel phase is poorly visible. However, electron diffraction measurements (RHEED) clearly confirmed the presence of nanostructured spinel structure on top of the samples. Moreover, AFM measurements show that nanostructured spinel islands are present on the sample surface. The measurements validated that indeed, hierarchically organized spinel-oxides nanostructures were obtained. A possible model growth of the spinel nanostructures at different temperatures is discussed.

Author Biography

P. Sagan, The John Paul II Catholic University of Lublin

Centre for Interdisciplinary Research

References

K. Ariga, Q. Ji, W. Nakanishi, J.P. Hill, M. Aono, Materials Horizons 2, 406(2015); https://doi.org/10.1039/C5MH00012B.

I. Ashraf, S. Rizwan, M. Iqbal, Front. Mater.7, 181 (2020) ; https://doi.org/10.3389/fmats.2020.00181.

Z. Ren, Y. Guo, C-H. Liu, P-X. Gao, Front. Chem.1, 18 (2013); https://doi.org/10.3389/fchem.2013.00018.

M. Alvarez,A. Calle, J. Tamayo, L.M. Lechuga, A. Abad, and A. Montoya, Biosens. Bioelectron 18, 649 (2003); https://doi.org/10.1016/s0956-5663(03)00035-6.

J. Xu, Z. Pan, S. Peng, Y. Zhao, S. Jiang, Y. Chen, Z-H. Xie, P. Munroe, iScience 24, 101942 (2021); https://doi.org/10.1016/j.isci.2020.101942.

J. Patila, D. Nadargia, I. S.Mullab, S.S. Suryavanshia, Materials Letters 213(15), 27 (2018); https://doi.org/10.1016/j.matlet.2017.11.009.

P. Ma, X. Li, Y, Zhang, Le Han, Yan Xu, Materials Science in Semiconductor Processing 133,105993 (2021); https://doi.org/10.1016/j.mssp.2021.105993.

S. Zhang, W. Jiang, Y. Li, X. Yang, P. Sun, F. Liu, Xu Yan, Y. Gao, X. Liang, J. Ma, G. Lu, Sensors and Actuators B: Chemical 291, 266 (2019); https://doi.org/10.1016/j.snb.2019.04.090.

Qinghong Xu, Yuxue Zhao, Yabo Wei, Wensheng Yang, Feng Li, Mingguang Gu,Solid State Sciences 10(3), 337 (2008); https://doi.org/10.1016/j.solidstatesciences.2007.09.024.

A. Hossain, M.S.I. Sarker, M.K.R. Khan, M.M. Rahman, Materials Science and Engineering: B 253, 114496 (2020); https://doi.org/10.1016/j.mseb.2020.114496.

A. Mahmood, S. M. Ramay, W. Al-Masry, C. W. Dunnil, N. Y. A. Al-Garadi, Journal of Materials Research and Technology 9, 16159 (2020); https://doi.org/10.1016/j.jmrt.2020.11.063.

J.W. Colby, Advances In X-ray Analysis 11, 918 (1968).

L.J. Pouchou, F.Pichoir, Scanning, 12, 212(1990).

G.F. Bastin, J.M. Dijkstra, H.J.M.Heijligers, D.Klepper, Microchimica Acta, 12, 93 (1992); https://doi.org/10.1017/S1431927609991218.

R. Li, Q. Fu, X. Zou, Z. Zheng, W. Luo, L. Yan, Journal of Advanced Ceramics 9(1), 64 (2020); https://doi.org/10.1007/s40145-021-0477-y.

W. Zhou, L. Zhang, Ch. Ouyang, J. Wu, Z. Huang, X-f, Xu, Applied Surface Science 311443 (2014).

M. Kumar, Mater. Res. Express 6,096404 (2019); https://orcid.org/0000-0003-0062-2590.

N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, J Mater Sci: Mater Electron 27, 280019(2016).

D.K. Pradhan, S. Kumari, D.K. Pradhan, A. Kumar, R.S. Katiyar, R.E. Cohen, Journal of Alloys and Compounds766, 1074 (2018); https://doi.org/10.1016/j.jallcom.2018.06.348.

P. Rajagiri, B.N. Sahu,N. Venkataramani, S. Prasad, R. Krishnan, Advances 8, 056112 (2018); https://doi.org/10.1063/1.5007792.

I.O Rudyj, I.V Kurilo, M.S Frugynskyi, M Kuźma, J Zawiślak, I.S Virt, Applied Surface Science 154–155, 206 (2000).

H.Le.Trong, T.M.A. Bui, L. Presmanes, A. Barnabé, I. Pasquet, C. Bonningue, Ph. Tailhades, Thin Solid Films 589, 292 (2015); https://doi.org/10.1016/j.tsf.2015.05.041.

B. Mauvernay, and Presmanes, Lionel and Bonningue, Corine and Tailhades, Philippe, Journal of Magnetism and Magnetic Materials 320 (1), 58 (2008); http://dx.doi.org/10.1016/j.jmmm.2007.05.042.

L.V. Gambino, N.J. Magdefrau, M. Aidnow, Surface and Coatings Technology 286, 206 (2016).

N.F.A. Neto, D.M.G. Leite, P.M. Lisboa-ilho, J.H.D. da Silva, J. Vac, Technol A 36(6), 6152, (2018).

G. De Györgyfalva,&I. Reaney, Journal of Materials Research18(6), 1301(2003); https://doi.org/10.1557/JMR.2003.0179.

A. Gaur, V.M. Sglavo, Journal of European Ceramic Society 34, 2391(2014).

L.R. Shaginyan, J.G. Han, V.R. Shaginyan, J. Musil, J. Vac. Sci. Technol. A 24(4), 1083 (2006); https://doi.org/10.1116/1.2210947.

L.R. Shaginyan, V.R. Shaginyan, J.G. Han, Eur. Phys. J. B 46, 335 (2005); https://doi.org/10.1140/epjb/e2005-00258-4.

S. Fritze, C. M. Koller, Linus von Fieandt, P. Malinovskis, K. Johansson, E. Lewin, P. H. Mayrhofer, U. Jansson, Materials (Basel), 12(4), 587(2019).

Published
2021-09-07
How to Cite
[1]
SaganP., FrugynskyiM., MroczkaR. and WiszG. 2021. Properties of multicomponent (Mn-Ni-Co-Al-Si-Ti) oxide spinel hierarchically organized nanostructures deposited by magnetron sputtering in two temperatures. Physics and Chemistry of Solid State. 22, 3 (Sep. 2021), 494-500. DOI:https://doi.org/10.15330/pcss.22.3.494-500.
Section
Scientific articles (Physics)